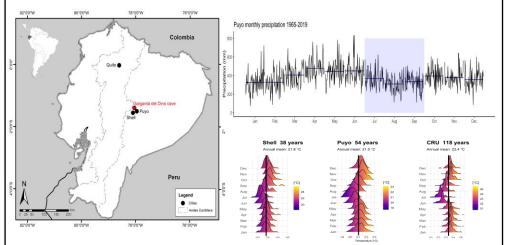
Preliminary results of speleothem U-Th dating and paleoclimate reconstruction from Garganta del Dino Cave (Ecuador)

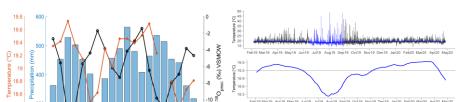
Danny Vargas, Marjan Temovski, Gabriella Kiss, Elemér László, Gergely Surányi, László Palcsu Isotope Climatology and Environmental Research Centre danny.vargas@atomki.hu

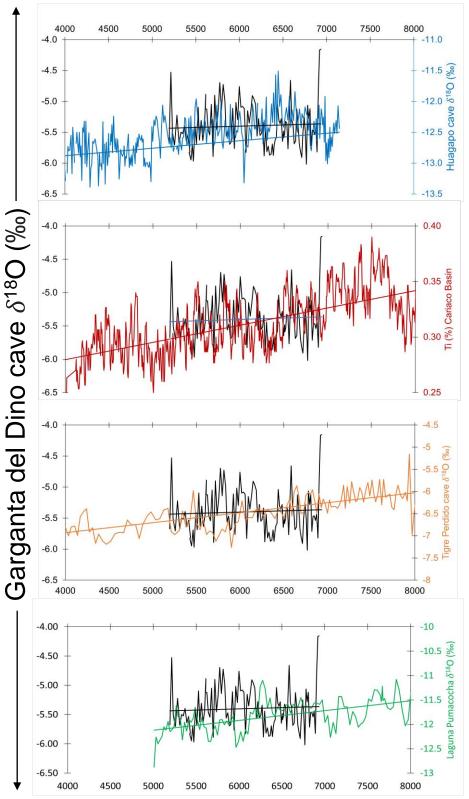
Introduction


Most of the paleoclimate records in South America have focused in the central and southern parts of the continent. Here, the sites receive 70-80% of the annual precipitation during the mature stage of the South American Monsoon System (SAMS) in austral summer (DJF) (Vuille et al. 2005). Therefore, we aim to:

-Bridge the gap of paleoclimate records in northern South America, particularly western Amazon.

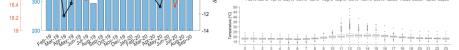
-Improve our understanding of ITCZ migrations at millenial scale.


Study site


Garganta del Dino cave is located in the Ecuadorian western Amazon (1°25' S, 78°2' W). Precipitation shows a bimodal pattern modulated by the Intertropical Convergence Zone (ITCZ) from April to June and October to December.

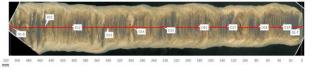
Monitoring

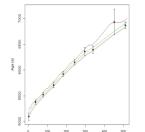
Stable isotopes in precipitation show an amount effect in the lowland Amazon, whereas altitude effect is more pronounced towards the Andes. Temperature does not play a significant role and follows the normal march of insolation with a minimum decrease during June solstice.


Climatology and Environmental

Research Centre

PM


Observations


Dino-1 stalagmite time-series loosely follow the general trend of decrease in δ¹⁸O values from Early to Middle-Holocene. Previous studies have hypothesize a southward shift of the ITCZ mean position during the Holocene (Haug et al.2001), and our record seems to confirm that observation
Similar δ¹⁸O trends despite altitude of the records supports the interpretation of constant lapse-rate during the Holocene (Kanner et al.2013).
δ¹⁸O integrates both circulation and precipitation variability from Amazon to the Andes.

Preliminary results Dino-1

- 11 U-Th ages (1 age reversed at bottom)
- -110 samples stable isotope composition ($\delta^{18}O$, $\delta^{13}C$)
- Fast growth rate (0.2–0.5 mm/yr)
- Dated to 6.87 to 5.10 ka BP (Middle Holocene)

References

-Haug et al., 2001. *Science Reports.* Vol. 293 -Kanner et al., 2013. Quater. Science Reviews. 75 -Vuille et al., 2005. *Clim. Dynam.* 25:401-413

28th International Karstological School "Classical Karst" Regional Karstology – Local And General Aspects 14-18 June, 2021, Postojna, Slovenia The research was supported by the European Union and the State of Hungary, co-financed by the European Regional Development Fund in the project of GINOP-2.3.2-15-2016-00009 'ICER'.